We thank the Natural Sciences and Engineering Research Council of Canada for its financial support. We also thank Dr M. Simard and Mrs F. Bélanger-Gariépy for their assistance in the X-ray data collection and structure determination.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, least-squares-planes data and torsion angles have been deposited with the IUCr (Reference: FG1010). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bednowitz, A. L. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 58–62. Copenhagen: Munksgaard.

Brown, C. J. (1966). Acta Cryst. 21, 153-158.

- Carlisle, C. H. & Smith, C. H. (1971). Acta Cryst. B27, 1068-1069.
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Krigbaum, W. R., Chatani, Y. & Barber, P. G. (1970). Acta Cryst. B26, 97-102.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1995). C51, 1167-1168

3-(4-Bromophenyl)-1-(3-thienyl)-2-propen-1-one (BTC)

HE YOUPING, WU QIANGJIN AND SU GENBO

Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou 350002, People's Republic of China

(Received 10 March 1994; accepted 28 November 1994)

Abstract

The title chalcone derivative, $C_{13}H_9BrOS$, has a dihedral angle of 22.30° between the 4-bromobenzyl and the thienyl group planes. There is electron conjugation between the central ---CH==CH---C(==O)--- group and the benzyl and thienyl groups.

Comment

Chalcone derivatives are newly developed organic crystals with nonlinear optical properties (Kitaoka, Sasaki, Nakai & Goto, 1991). In an attempt to improve these properties, we have synthesized a series of substituted thiophene chalcone derivatives.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Structural studies reveal that one of the products is the title compound, 3-(4-bromophenyl)-1-(3-thienyl)-2-propen-1-one, BTC.

In general, bond lengths in conjugated systems are intermediate between double- and single-bond lengths. For the title compound, BTC, the C(4)—C(7), C(9)— C(10), C(8)-C(9), C(7)-C(8) and O(1)-C(9) bond lengths are 1.47(1), 1.49(1), 1.483(9), 1.29(1) and 1.218 (7) Å, respectively. These bonds are similar to equivalent bonds found in 3-(4-chlorophenyl)-1-(3thienyl)-2-propen-1-one (CTC) (He, Shi & Su, 1994). The C—Br distance is 1.893 (6) Å, longer than the C— Cl distance of 1.736 (4) Å in CTC. The dihedral angle between the planes of the 4-bromobenzyl group and the thienyl group is 22.30° (the equivalent dihedral angle in CTC is 21.93°). Both BTC and CTC crystallize in the same monoclinic system with space group P21. BTC exhibits nonlinear optical properties; this has been confirmed by a second harmonic generation efficiency measurement on a powder sample using the method of Kurtz & Perry (1968).

Fig. 1. The molecular structure of the title compound with the atomic numbering. The displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was prepared at room temperature by the condensation of 3-acetylthiophene and 4-bromobenzaldehyde in an alcoholic solution using sodium hydroxide as catalyst. A crystal was grown from alcoholic solution.

Crystal data

C13H9BrOS	Mo $K\alpha$ radiation
$M_r = 293.18$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
P2 ₁	reflections
a = 5.978 (2) Å	$\theta = 14.8 - 16.8^{\circ}$
b = 4.945(2) Å	$\mu = 3.57 \text{ mm}^{-1}$
c = 20.168 (4) Å	T = 296 K
$\beta = 95.80(3)^{\circ}$	Plate

V = 593.2 (6) Å³ Z = 2 $D_{\rm r} = 1.64 {\rm Mg m^{-3}}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: empirical via ψ scans (TEXSAN; Molecular Structure Corporation, 1985) $T_{\min} = 0.5252, T_{\max} =$ 1.0000 3062 measured reflections

Refinement

Refinement on F	$w = 1/\sigma^2(F_o)$
R = 0.046	$(\Delta/\sigma)_{\rm max} = 0.056$
wR = 0.052	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.39	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
1529 reflections	Atomic scattering factors
144 parameters	from Cromer & Waber
H-atom parameters not refined	(1974)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

 $B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$

	x	у	Z	Bea
Br(1)	0.12226 (9)	0.2857	0.55689 (3)	4.03 (2)
S(1)	0.5099 (3)	1.8778 (5)	0.9344 (1)	5.50 (9)
O(1)	1.0287 (7)	1.421 (1)	0.8002 (3)	5.6 (2)
C(1)	0.300(1)	0.544 (1)	0.6074 (3)	3.2 (2)
C(2)	0.504 (1)	0.624 (2)	0.5858 (3)	4.0 (3)
C(3)	0.6349 (8)	0.811 (2)	0.6230 (3)	3.9 (2)
C(4)	0.567 (1)	0.913 (1)	0.6821 (3)	3.6 (2)
C(5)	0.362(1)	0.827 (2)	0.7023 (3)	3.7 (3)
C(6)	0.231 (1)	0.639(1)	0.6657 (3)	3.5 (2)
C(7)	0.712(1)	1.106 (2)	0.7209 (3)	3.9 (3)
C(8)	0.665 (1)	1.249 (2)	0.7710 (3)	3.7 (3)
C(9)	0.830(1)	1.428 (2)	0.8091 (3)	4.0 (3)
C(10)	0.749 (1)	1.613(1)	0.8600 (3)	3.8 (2)
C(11)	0.892 (1)	1.796 (3)	0.8980 (3)	5.2 (3)
C(12)	0.787 (1)	1.953 (2)	0.9421 (3)	4.6 (3)
C(13)	0.535 (1)	1.639 (2)	0.8751 (3)	4.5 (3)

Table 2. Selected geometric parameters (Å, °)

Br(1)C(1)	1.893 (6)	C(4)—C(7)	1.47 (1)
S(1)—C(13)	1.698 (8)	C(5)—C(6)	1.38 (1)
S(1)-C(12)	1.690 (7)	C(7)—C(8)	1.29 (1)
O(1)—C(9)	1.218 (7)	C(8)—C(9)	1.483 (9)
C(1)—C(6)	1.369 (8)	C(9)—C(10)	1.49 (1)
C(1)—C(2)	1.390 (9)	C(10)—C(13)	1.353 (9)
C(2)—C(3)	1.38(1)	C(10)—C(11)	1.41 (1)
C(3)—C(4)	1.394 (9)	C(11)—C(12)	1.38 (1)
C(4)—C(5)	1.393 (8)		
C(13)—S(1)—C(12)	93.7 (4)	C(8)—C(7)—C(4)	127.7 (6)
C(6)C(1)C(2)	121.5 (6)	C(7)-C(8)-C(9)	123.2 (6)
C(6)—C(1)—Br(1)	119.4 (4)	O(1)-C(9)-C(8)	121.0 (7)
C(2)C(1)Br(1)	119.1 (5)	O(1)C(9)C(10)	120.3 (6)
C(3)C(2)C(1)	119.1 (6)	C(8)-C(9)-C(10)	118.6 (5)
C(4)C(3)C(2)	120.5 (5)	C(13)—C(10)—C(11)	110.5 (7)

C(3)-C(4)-C(5)	118.7 (6)	C(13)-C(10)-C(9)	126.3 (6)
C(3)—C(4)—C(7)	118.9 (5)	C(11)-C(10)-C(9)	123.2 (6)
C(5)—C(4)—C(7)	122.3 (6)	C(12)-C(11)-C(10)	115.1 (6)
C(6)-C(5)-C(4)	121.2 (6)	C(11) - C(12) - S(1)	108.6 (5)
C(5) - C(6) - C(1)	118.9 (5)	C(10) - C(13) - S(1)	112.1 (5)

A crystal of the title compound was mounted at a random orientation on a glass fibre. Data were collected with a scan width of $(0.55 + 0.35 \tan \theta)^{\circ}$, and corrected for Lorentz and polarization factors.

The structure was solved by direct methods using MITHRIL (Gilmore, 1983) and DIRDIF (Beurskens, 1984). H atoms were placed in geometrically calculated positions with C-H = 0.95 Å, but were not refined. The structure was refined on Fusing a full-matrix least-squares technique with anisotropic displacement parameters for the C, O, S and Br atoms. Anomalous-dispersion corrections were not applied.

Diffractometer software used: CONTROL (Molecular Structure Corporation, 1988). All calculations were performed on a MicroVAX II computer using the TEXSAN (Molecular Structure Corporation, 1985) program package. The view of the molecule was produced using PLUTO (Motherwell & Clegg, 1978).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and least-squares-planes data have been deposited with the IUCr (Reference: AB1178). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Tables 2.2A, 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Department of Chemistry, Univ. of Glasgow, Scotland.
- He, Y., Shi, J. & Su, G. (1994). Acta Cryst. C50, 804-805.
- Kitaoka, Y., Sasaki, T., Nakai, S. & Goto, Y. (1991). Appl. Phys. Lett. 59. 19-21.
- Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). CONTROL. An Automatic Package for Rigaku AFC Single-Crystal Diffractometers. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.

C13H9BrOS

 $0.75 \times 0.75 \times 0.35$ mm

2914 independent reflections

1529 observed reflections

 $[l > 3\sigma(l)]$

 $R_{\rm int} = 0.0213$

 $\theta_{\rm max} = 35^{\circ}$

 $h = 0 \rightarrow 9$

 $k = 0 \rightarrow 7$

 $l = -32 \rightarrow 32$

3 standard reflections

frequency: 60 min

intensity decay: 0.4%

Colourless